Принцип работы счетчика матрицы АСКУЭ с интерфейсом абонента

Системы АСКУЭ в нашей стране набирают большую популярность. По данным исследовательского агенства J’son&Partners Consulting, с 2019 года количество счетчиков, которые передают показания в режиме онлайн, увеличилось с 5 млн. до 32,55 млн. Такой рост не удивителен, в автоматизированных системах есть ряд больших преимуществ:

  1. Доступ к показаниям всех объектов в одном окне. Нет необходимости ездить по объектам, для передачи показаний в Энергосбыт, достаточно щелкнуть пару раз мышью на компьютере, чтобы увидеть какое потребление было по всем объектам за последний месяц.
  2. Автоматический сбор профиля мощности. Если предприятие сидит на почасовом тарифе за электроэнергию, оно обязано сдавать информацию о почасовом потреблении. То, ради чего энергетики каждый месяц подключают компьютер к счетчику, потом формируют отчеты для отправки поставщику электроэнергии, в АСКУЭ делается в пару кликов. Это освобождает десятки часов для более важных дел.
  3. Контроль качества электроэнергии. Современные счетчики способны следить за параметрами электроэнергии, а вовремя отследить и оповестить о проблемах в сети можно только с помощью АСКУЭ.
  4. Расчет выгодного тарифа на электроэнергию. Некоторые АСКУЭ способны определить самую выгодную ценовую категорию, что снизит стоимость электроэнергии до 30%.

Плюсов от использования АСКУЭ достаточно много. Давайте разберем, как это работает.

Принцип работы

Для того, чтобы собирать показания онлайн, к электросчетчику необходимо подключить модем, через который будет совершаться обмен данными между прибором учета и системой АСКУЭ. Ниже мы разберём какие электросчетчики и модемы понадобятся.

Для передачи данных в 2019 году используют следующие технологии:

  1. GSM/GPRS – передача данных по сетям сотовой связи;
  2. RF, ZigBee – беспроводная передача данных по радиоканалу;
  3. PLC – передача данных по силовым проводам 220/380В;
  4. Ethernet – передача данных по интернету;
  5. LoRaWAN — технология беспроводной передачи данных.

У каждой технологии свои особенности, подробнее о них вы можете почитать в этих статьях:

Обзор систем удаленного сбора показаний (АСКУЭ) >

Обзор АСКУЭ с использованием протокола LoRaWAN >Обзор АСКУЭ с передачей данных по сотовой сети и через Интернет >Обзор АСКУЭ на технологии PLC >Обзор АСКУЭ с передачей данных по радиоканалу >

Весь принцип работы сводится к простой схеме: электросчетчик через специальный интерфейс (чаще всего RS485) подключается к модему, который обменивается данными с сервером АСКУЭ. Или электросчетчик со встроенным модемом обменивается данными с сервером АСКУЭ.

Теперь разберём, что потребуется для организации АСКУЭ.

Электросчетчик

Нам понадобится современный электронный счетчик с интерфейсом RS485. Также можно использовать электросчетчики со встроенным модемом, но они стоят дороже.

Мы рекомендуем:

  • Меркурий 206, 203.2Т, 230, 233, 234, 236 в маркировке которых присутствуют буквы R или G;
  • Энергомера СЕ102(М), СЕ201, СЕ301, СЕ303, СЕ306 в маркировке которых присутствуют буквы A или G;
  • Нева 113, 114, 123, 124, 313, 314, 323, 324 в маркировке которых присутствует E4;
  • Альфа А1140, А1180 в маркировке которых присутствует буква B;
  • ПСЧ-4ТМ.05МК, ПСЧ-4ТМ.05МН, ПСЧ-4ТМ.05МД, ПСЧ-3ТА.07.x1x;
  • СЭТ-4ТМ.02М, СЭТ-4ТМ.03M

Нашим клиентам мы устанавливаем: Меркурий 206 PRNO, Меркурий 230 ART-0x PQRSI(D)N, Меркурий 234 ART-0x P.

Модем

Выбор модема зависит от технологии, которой Вы собираетесь пользоваться.

Своим клиентам мы рекомендуем GPRS-модемы или Ethernet-модемы, потому-что RF, ZigBee, PLC сильно подвержены помехам, LaRaWAN окупается когда количество счетчиков в одной сети более 200. Наиболее практичны GPRS-модемы от производителей iRZ и TELEOFIS.

Мы устанавливаем iRZ ATM21, TELEOFIS WRX768, TELEOFIS ER108.

Настройка удаленного опроса

После того, как установили оборудование, переходим к настройке удалённого опроса

Зарегистрироваться в АСКУЭ яЭнергетик

Зарегистрировавшись сейчас, у Вас активируется бесплатный 7-дневный период. Этого будет достаточно, чтобы настроить оборудование и провести первые тесты системы.

После успешной регистрации, Вы увидите такую страницу:

Где необходимо нажать “Создать счетчик”.

Теперь указываем название объекта, на котором будем производить удаленный опрос, марку счетчика и его номер.

Если счетчик однотарифный или поддерживает более 2 тарифов указываем это в тарифных зонах, если есть желание, можно переименовать название тарифных зон. Нажимаем кнопку “Сохранить и настроить АСКУЭ”.

Теперь мы видим окно настроек АСКУЭ.

Выбираем тип счетчика из выпадающего списка. На счетчиках Меркурий сетевой адрес рассчитывается автоматически, на других счетчиках он устанавливается по-умолчанию.

На выборе типа соединения мы остановимся подробнее:

  • GSM модем — опрос электросчетчика будет осуществляться звонком на СИМ-карту установленной в модем. Этот способ достаточно дорогой — 2 рубля за каждый опрос. Мы рекомендуем не использовать этот тип соединения, а настроить модем для опроса по GPRS.
  • GPRS модем — это решение идеально подходит для счетчиков со встроенным модемом. Опрос будет осуществляться при подключении модема к серверу яЭнергетик через GPRS.
  • Интернет соединение (TCP клиент) — этот пункт нужно выбрать, если для опроса счетчика будет использоваться Ethernet модем, подключенный к интернету, который самостоятельно будет устанавливать соединение с сервером яЭнергетик.
  • Интернет соединение (TCP сервер) — этот пункт нужно выбрать, если для опроса счетчика будет использоваться Ethernet модем, подключенный к интернету. Модем должен быть со статическим IP-адресом, чтобы сервер яЭнергетик мог подключиться к нему и провести опрос.
  • Интернет соединение (TCP клиент) с протоколом TELEOFIS — этот пункт необходимо выбрать если счетчик будет опрашиваться через Ethernet конвертер TELEOFIS.
  • GPRS модем с протоколом IRZ — этот пункт необходимо выбрать если счетчик будет опрашиваться через GPRS модем iRZ.
  • GPRS модем с протоколом TELEOFIS — этот пункт необходимо выбрать если счетчик будет опрашиваться через GPRS модем TELEOFIS.
  • GPRS модем SprutNet PRO BGS2 — этот пункт необходимо выбрать если счетчик будет опрашиваться через GPRS модем SprutNet PRO BGS2.
  • GPRS модем с протоколом CE-NetConnections (Энергомера) — этот пункт необходимо выбрать если счетчик будет опрашиваться через встроенный GPRS модем в счетчиках Энергомера.
  • GSM шлюз RG 107 — опрос электросчетчика будет осуществляться через GSM шлюз RG 107.
  • Соединение со шлюзом RG 107 через сервер Тайпит — опрос электросчетчика будет осуществляться через шлюз RG 107, который устанавливает соединение с серверами компании «Тайпит».
  • Вега СИ-13 — опрос электросчетчиков будет осуществляться через базовую станцию Вега СИ-13 к которой будут подключены электросчетчики по технологии LoRaWAN.

В нашем примере будет использоваться модем iRZ ATM21.A, поэтому выбираем “GPRS модем с протоколом IRZ”, вводим IMEI модема и указываем, что счетчик будет опрашиваться через отдельное устройство.

Адрес и порт для подключению к серверу будет выдан после завершения настроек.

При необходимости меняем пароли первого и второго уровня электросчетчика для подключения к нему.

Нажимаем кнопку “Сохранить”.

яЭнергетик выдаст окно, где указаны параметры, которые нужно будет записать в модем, для подключения его к серверу АСКУЭ.

Мы уже писали статьи по настройке некоторых модемов. Вы можете ознакомится с ними в этих статьях:

Настройка удаленного опроса электросчетчика Меркурий 203.2T GBO со встроенным GPRS-модемом >

Настройка удаленного опроса электросчетчиков с помощью GPRS модема iRZ ATM2-485 >Настройка удаленного опроса электросчетчика Меркурий 234 ARTM со встроенным модемом >

После настройки АСКУЭ и модема, необходимо проверить его работоспособность. Для этого внутри счетчика открываем вкладку “Показания” и нажимаем кнопку “Опросить”.

После успешного опроса Вы увидите сообщение о получении нового показания в таблице.

АСКУЭ яЭнергетик

  • Работает на любом устройстве с интернетом
  • Быстрая настройка удалённого опроса
  • 7 дней бесплатного пользования

Зарегистрироваться

Вследствие экономического кризиса, эксплуатация коммерческой и некоммерческой недвижимости для управляющих компаний продолжает дорожать. Приоритетными среди затрат по-прежнему остаются расходы на оплату энергоносителей.

Системы автоматического учета и контроля распределения электроэнергии (АСКУЭ) — уже давно инструмент номер один в арсенале управляющих компаний. Но технический прогресс не стоит на месте, и за последние годы появилось множество технологий АСКУЭ.

Проводные АСКУЭ — самый старый вид построения сети, который сегодня все реже используется в многоквартирных домах, но пока еще встречается в промышленном секторе.

В качестве коммуникаций при построении системы PLC применяются непосредственно силовые линии электроснабжения. Упрощенно эту технологию можно представить системой взаимосвязанных между собой электросчетчиков абонентов в рамках многоквартирного дома или коттеджного поселка.

Устройства связаны посредством линий 0,4 кВ с концентраторами, расположенными в трансформаторной подстанции (ТП) и передающими диспетчеру информацию о потребляемой электроэнергии через GSM-шлюзы.

Счетчики и концентраторы используют интерфейс RS-485 — международный стандарт, описывающий характеристики дифференциальных линий связи (тип «общая шина»), который позволяет беспрепятственно загрузить необходимую информацию просто подключив ноутбук.

Выделяют два подвида технологии PLC — PLC-I и PLC-II.

PLC-I прекрасно справляется с учетом электроэнергии в бытовых условиях многочисленных потребителей. Данные собираются в пределах определенных временных интервалов с возможностью анализировать и рассчитывать объемы потребления электрической энергии.

PLC-II предоставляет более широкие функциональные возможности, и, помимо статистики потребления, позволяет осуществлять оперативный контроль качества электроснабжения.

Характеристики PLC-I и PLC-II могут различаться в зависимости от производителя оборудования. Чтобы разобраться в основных различиях, приведем сравнительную характеристику на примере оборудования «Меркурий».

  • Диапазон рабочих частот . PLC-I работает в диапазоне частот 20-95 кГц, PLC-II — 62,5-82,5 кГц.
  • Количество подключаемых приборов учета . Система PLC-II предоставляет возможность подключения большего количества точек учета, определенных пределами одной подстанции — 2019 шт. по сравнению с 2019 шт. у PLC-I.
  • Ступени ретрансляции . PLC-II имеет 15 ступеней, в то время как PLC-I всего 3. При этом в системе на PLC-II каждый прибор учета сам по себе является ретранслятором, что позволяет не использовать в качестве ретрансляторов дополнительные концентраторы.
  • Протяженность сети . PLC-II поддерживает сеть, протяженностью 2,5 км, против 1,2 км у PLC-I.
  • Предварительная настройка оборудования . PLC-I необходимо предварительное присвоение сетевых адресов.

Компания «Меркурий» — один из представителей рынка проводных систем диспетчеризации. Для технологий PLC-I используются модели «Меркурий 200.04 M», «Меркурий 206 PLNO», «Меркурий 201.22M», «Меркурий 230 AR», «Меркурий 230 ART», «Меркурий 234ART». Линейка приборов учета, используемых в системах PLC-II, представлена моделями «Меркурий 203.2Т», «Меркурий 233ART», «Меркурий 234ARTM».

Помимо этого, в системах PLC себя зарекомендовали счетчики СЭТ, ПСЧ и СЭБ, выпускаемые АО «НППО им. Фрунзе».

Беспроводные системы учета электроэнергии имеют большой выбор технологий, позволяющих осуществлять передачу данных без использования проводов. Рассмотрим основные из них.

Системы беспроводного учета, использующие оборудование с подключением к GSM-модемам , передают данные через сотовую сеть оператора. Один GSM-модем позволяет собирать показания как с одного счетчика, так и с группы устройств.

Для считывания данных существует широкий ассортимент различных программ-конфигураторов, а бесперебойность поступления информации гарантируют встроенные в модем таймеры перезагрузки.

Счетчики со встроенным GSM-модулем уже более десяти лет производят концерн «Энергомера» и ООО «Эльстер Метроника». К таким счетчикам относятся устройства серии «Меркурий» и «Альфа».

Поскольку GPRS — своего рода, надстройка технологии GSM, то особенности, описанные для GSM, будут справедливы и для GPRS. По сравнению с GSM, GPRS обладает повышенной скоростью передачи данных.

Казалось бы, скорость открывает больше возможностей для АСКУЭ. Но на практике высокая скорость при передачи данных потребления электроэнергии становится редко востребованной. Для того, чтобы раз в месяц или, самое частое, раз в сутки, снять показания потребления абонентов, высокая скорость передачи данных не нужна.

ZigBee , Z-Wave и M-Bus являются самыми популярными в сфере создания «умных домов» и широко применяется в Европе для контроля потребления энергоносителей еще с 90-х годов.

Как и WiFi, ZigBee работает в диапазоне частот 2,4 ГГц, но при этом ZigBee не ограничена одним каналом и может использовать разные. Z-Wave использует диапазон частот до 1 ГГц, что делает ее более защищенной от помех. Обе технологии оптимизированы для передачи небольших команд — включить/выключить, прибавить или снизить яркость освещения и т.п.

Технология передачи данных M-Bus тоже считается беспроводной, но с некоторыми оговорками — все приборы учета соединяются шиной m-bus, посредством которой коммутируется оборудование и передаются данные.

К несомненным преимуществам всех трех технологий можно отнести умеренные затраты на монтаж и низкое энергопотребление. Однако до сих пор эти технологии продолжают быть применимы, главным образом, для европейского формата.

  • Радиус передачи данных до 50 м вызывает необходимость дополнительных уровней ретрансляции, что увеличивает стоимость системы.
  • Применяемые структуры сети подразумевают наличие разнотипного оборудования, что также ведет к удорожанию системы и снижению ее надежности.
  • Построенную сеть обслуживает только интегратор, что делает поддержание готовой системы очень дорогим.

LPWAN — технология беспроводной передачи данных с низким потреблением энергии и охватывающая большие площади.

Технология LPWAN увязывает две основные константы при передаче информации — энергоэффективность и радиус охвата территории стабильного приема. Технология позволяет надежно и при умеренных финансовых затратах коммутировать датчики, передающие информацию об энергопотреблении с территорий, удаленных на десятки километров.

LPWAN отличается высоким уровнем проникновения сигнала. По сравнению с модемами GSM/GPRS, устройства на базе LPWAN продолжают передавать данные даже в условиях подземной прокладки коммуникаций.

Компания «СТРИЖ» — пионер в создании оборудования и АСКУЭ на базе технологии LPWAN в России. АСКУЭ, созданная на базе счетчиков серии «Ампер» позволяет организовать надежную передачу данных об энергопотреблении с охватом территории до 50 километров.

Подводя итоги, можно сказать, что проводные АСКУЭ дешевле в процессе построения сети, однако такие системы будут ненадежны в использовании, и в конечном счете выльются в дорогое обслуживание.

Системы на базе GSM/GPRS, а также технологии «умных домов», подходят для решения ряда задач на частном уровне, но не применимы в масштабных проектах по диспетчеризации ресурсов на производстве, в коттеджных поселках или многоквартирных домах. Большое количество промежуточного оборудования, необходимое для стабильной работы таких систем, снижает надежность АСКУЭ и увеличивает расходы на установку и обслуживание.

Современные беспроводные технологии, такие как протокол радиосвязи LPWAN, позволяют за разумный бюджет добиться высоких результатов в отношении устойчивости передачи данных и надежности использования системы АСКУЭ в целом.

Используя высокотехнологичные системы учета электроэнергии, управляющие компании и собственники недвижимости могут существенно сократить затраты на энергоресурсы и эксплуатацию.

Смотрите систему автоматизированного сбора показаний «СТРИЖ»

Характерные особенности оборудования «Меркурий-PLC»

«Меркурий-PLC» — это набор оборудования и программного обеспечения для построения АИИС (АСКУЭ) обеспечивающей автоматизированный учёт потребления электроэнергии частными или юридическими лицами присоединёнными к низковольтным сетям напряжением 0,4 кВ.

Отличительной особенностью нашей системы от множества других является то, что контроль за потреблением электроэнергии осуществляется непосредственно по силовой распределительной сети 0,4 кВ, т.е. применена технология PLC как наиболее отвечающая критерию снижения себестоимости точки учёта вследствие отсутствия необходимости в специальных каналах связи с отдельно взятым электросчётчиком.

Объектами автоматизации могут являться жилищные массивы многоэтажных домов, сельские и дачные посёлки, а так же здания и сооружения где имеются потребители электроэнергии и большое количество узлов учёта, например торговые центры. В более простом варианте, который интересен, прежде всего, поставщикам данного ресурса, возможен учёт отпуска электроэнергии с фидеров 0,4 кВ трансформаторных подстанций, причём узлы учёта могут располагаться как на самих трансформаторных подстанциях, так и вне их, например, на вводах многоквартирных домов или различных субарендаторов.

В составе технических средств PLC связи применены современные программно-аппаратные и компоновочные решения характерные для оборудования данного типа. Например, специализированный модем встроен в корпус счётчика, что упрощает монтаж точки учёта и обеспечивает передачу данных от счётчиков исключительно в цифровом виде, а это, в свою очередь, гарантирует идентичность показаний счётчиков и данных принятых УСПД. Технические решения применённые при разработке оборудования PLC связи защищены двумя патентами РФ.

В отличии от АИИС, построенных на базе счётчиков с традиционными проводными цифровыми интерфейсами RS-485 или подобными, отсутствие объединяющего интерфейсного кабеля значительно удешевляет стоимость монтажных работ и последующую эксплуатацию системы при одновременном увеличении надёжности функционирования и вандалоустойчивости. Совокупная стоимость системы практически полностью определяется суммарной стоимостью электросчётчиков.

Немаловажным фактором является то, что пусконаладочные работы не требуют какой-то особой квалификации и могут выполнятся силами местных специалистов. При грамотном монтаже оборудование PLC связи не нуждается в наладке.

В настоящий момент предлагается два варианта построения системы сбора данных. Каждый вариант предполагает использование оборудование PLC связи определённого типа, т.н. PLC-I и PLC-II. Оборудование PLC-I в большей степени ориентирована на создание АСКУЭ бытовых потребителей, где основным критерием является стоимость точки учёта. PLC-II обеспечивает на порядок большую функциональность, что делает возможным решение практически любых задач. АСКУЭ спроектированная на базе оборудования PLC-I будет выполнять статистические функции т.е. сбор и обработку информации за определенные временные отрезки, на основании которой производятся анализ и расчеты за потребленные виды энергии. АСКУЭ построенная на базе оборудования PLC-II кроме возможности статистического учёта может выполнять оперативно-измерительные функции, т.е в режиме приближённом к режиму реального времени отслеживать потребление и качество энергоносителей.

Решаемые задачи

АСКУЭ на базе оборудования PLC-I или PLC-II позволяет решать следующий круг задач:

  • Дистанционное получение в автоматическом или ручном режимах от каждого узла учёта сведений об отпущенной или потреблённой электроэнергии.
  • Расчёт внутриобъектового баланса поступления и потребления электроэнергии с целью выявления и ликвидации потерь.
  • Применение санкций против злостных неплательщиков путём ограничения допустимой мощности нагрузки или полного отключения энергоснабжения (Только PLC-II).
  • Контроль параметров электросети (Только PLC-II).
  • Обнаружение фактов несанкционированного вмешательства в работу приборов учёта или изменение схем включения в электросеть.
  • Анализ технического состояния и отказов приборов учёта.
  • Подготовку отчётов об электропотреблении.
  • Экспорт отчётов в биллинговые системы.

Типовые схемы приборного учёта на базе оборудования PLC-I или PLC-II.

Рис. 1 Учёт в жилом массиве.

Рис. 2 Учёт в коттеджном посёлке.

Рис. 3 Учёт отпуска электроэнергии с фидеров ТП-04кВ.

Состав оборудования Меркурий-PLC»:

Независимо от того какое оборудование PLC связи будет использовано для организации автоматизированного сбора данных его приборный состав остаётся неизменным. Оборудование системы для получения учётных данных от потребителей присоединённых к одной трансформаторной подстанции (ТП) 6(10)кВ

Для сбора информации о напряжении в сети, мощности тока и потребителях предназначены автоматизированные системы контроля и учета расходов электрической энергии. В задачу АСКУЭ входит преобразование аналогового сигнала, посылаемого через трехфазный счетчик, матрица которого автоматически обрабатывает данные и производит расчеты за потребленные энергетические ресурсы.

Принцип работы системы

Дистанционный сбор, обработка и хранение информации о потоках электрической энергии в ЛЭП осуществляется комплексом программных средств и аппаратных устройств. Принцип работы системы АСКУЭ основан на автоматизации контрольных операций, связан с проведением следующих операций:

  1. учет расхода электрической энергии;
  2. хранение данных посредством ресурса УСПД;
  3. ведение системного времени;
  4. передача данных на другие информационные ресурсы АРМ;
  5. анализ выходных параметров электрического потока;
  6. выработка методов управления и передача программ на технические средства.

Перед внедрением системы, созданной на базе инновационных технологий, осуществляется комплекс работ, в перечень которых входит:

  1. доскональное обследование объекта;
  2. проектирование с учетом региональных требований;
  3. монтаж оборудования;
  4. пусконаладочные работы;
  5. регистрация системы в органах энергосбыта;
  6. метрологическая поверка системы.

В связи с тем, что АСКУЭ помогает тестировать технологии последнего поколения, к современным системам предъявляются повышенные требования в категории надежности, функциональности, конечной стоимости и безопасности.

Электронные счетчики для АСКУЭ

Важными комплектующими элементами системы являются счетчики АСКУЭ и каналы связи. В отличие от индукционных приборов учета расходов электричества чувствительные электронные счетчики не имеют вращающихся деталей. Устройства обеспечивают широкий интервал входного напряжения, помогают организовать расширенную тарифную систему учета, сохраняют предыдущие показания в архиве, обладают режимом ретроспективы отдельно взятого периода.

Электронные приборы новой модели идеально вписываются в конфигурацию АСКУЭ. Разнообразие функций счетчика расхода электрического тока заключается в ПО встроенного микроконтроллера. В конструкцию устройства входит:

  1. корпус;
  2. колодка для клемм;
  3. трансформатор;
  4. печатная плата;
  5. ЖК-дисплей;
  6. источник питания схемы;
  7. часы;
  8. телеметрический выход;
  9. супервизор;
  10. оптический порт;
  11. органы управления.

Система учета расхода электричества представляет собой структуру из трех уровней. В первом уровне smart ims матрица содержит приборы учета NP545 и NP 524 электрической энергии, осуществляет передачу ресурса потребителю. Второй уровень матрицы состоит из коммуникационного оборудования, третий, главный уровень, выполняет обработку информации, поступающей со счетчиков np 515 и np 523.

Для обеспечения стабильного функционирования АСКУЭ используется электросчетчик np 545 или np 542, предназначенный для организации взаимодействия с трехфазным абонентом и дистанционного управления потоком электрической энергией. Электронные приборы передаются на «сумматоры», создают систему связи с центром обработки информации с помощью специального программного обеспечения.

Схема применения датчиков

Простейшая схема АСКУЭ предусматривает применение датчиков, имеющих выход на интерфейс RS-485, и датчиков управления аналого-цифровым преобразователем. Инструкция к оборудованию рекомендует учесть возможность интеграции с индукционными и электронными счетчиками, содержащими в конструкции электронные преобразователи энергии оборотов алюминиевого диска в электрический импульс.

Интерфейс RS -485 применяется для обеспечения взаимодействия контролеров и датчиков в АСКУЭ с входным сопротивлением на датчики приемника 12 кОм. С помощью передатчика интерфейса электроэнергия передается под небольшой мощностью, создающей ограничение по количеству принимающих устройств на линии в количество до 32 единиц.

В связке «поставщик электрической энергии — пользователь» содержатся специальные устройства, преобразующие и передающие сигналы с устройства RS-485 на RS-232 после считки информации контроллером или компьютером. При необходимости подключения 32 и более датчиков в схему вводятся концентраторы.

Импульсные и электронные приборы

Для безопасного подключения к системе АСКУЭ электронные приборы контроля потребления электрической энергии оборудованы интерфейсом. В комплектацию сложного электронного оборудования входит компьютер и сервер (контроллер с ПО), предназначенные для сбора, анализа, учета и архивирования данных. При отсутствии интерфейса счетчик может оснащаться оптическими портами для снятия показаний путем передачи данных в ПК.

Для дистанционной передачи показаний приборов контроля расходов ресурса приспособлен не только электронный прибор. Импульсный датчик с маркировкой литерой «Д», имеющий телеметрический выход, может работать с двухпроводной линией связи. Принцип действия импульсного устройства основан на считывании световых импульсов, количество которых зависит от скорости вращения диска. Потребляемая мощность оценивается индикаторным светодиодом.

Источником импульсов является электрический измерительный трансформатор, периодически направляющий магнитный всплеск на металлический затемненный участок диска. Импульсы направляются в линию связи через схему датчика. Приемный датчик подсчитывает импульсы и направляет результат на прибор с цифровым датчиком для дистанционного управления информацией.

По своим конструкционным свойствам индукционные счетчики, имеющие бытовое назначение, без предварительного дооснащения не могут принимать участие в построении схемы АСКУЭ. Введенный в систему преобразователь импульсной последовательности в интерфейс RS -232 повышает стоимость оборудования, может применяться в качестве локального прибора учета.

В процессе проектирования АСКУЭ предусматривается установка электронных электросчетчиков. Система обладает неограниченными возможностями в плане сервисного обслуживания потребительского рынка.

Отзывы пользователей

Удобная система передачи данных с домашнего компьютера, не нужно тратить время в очередях. Я довольна.

Мария Егоровна, Приморск

Сложно разобраться в программе дистанционной передачи показаний электросчетчика, может, постепенно научусь, но пока хожу в банк.

Петр Ильич, г. Владимир

Ничего сложного нет, зашел на сайт, ввел показания, получил сумму, оплатил, распечатал квитанцию — и свободен. Просто, быстро, без проблем.

Виталий, Изюм