Понятие удельного электрического сопротивления медного проводника

В данной статье мы подробно разберем что такое удельное сопротивление и электропроводность, ясно опишем все формулы с помощью примеров задач, а так же дадим вам таблицу удельных сопротивлений некоторых проводников.

Описание

Закон Ома гласит, что, когда источник напряжения (V) подается между двумя точками в цепи, между ними будет протекать электрический ток (I), вызванный наличием разности потенциалов между этими двумя точками. Количество протекающего электрического тока ограничено величиной присутствующего сопротивления (R). Другими словами, напряжение стимулирует протекание тока (движение заряда), но это сопротивление препятствует этому.

Мы всегда измеряем электрическое сопротивление в Омах, где Ом обозначается греческой буквой Омега, Ω. Так, например: 50 Ом, 10 кОм или 4,7 МОм и т.д. Проводники (например, провода и кабели) обычно имеют очень низкие значения сопротивления (менее 0,1 Ом), и, таким образом, мы можем пренебречь ими, как мы предполагаем в расчетах анализа цепи, что провода имеют ноль сопротивление. С другой стороны, изоляторы (например, пластиковые или воздушные), как правило, имеют очень высокие значения сопротивления (более 50 МОм), поэтому мы можем их игнорировать и для анализа цепи, поскольку их значение слишком велико.

Но электрическое сопротивление между двумя точками может зависеть от многих факторов, таких как длина проводников, площадь их поперечного сечения, температура, а также фактический материал, из которого он изготовлен. Например, давайте предположим, что у нас есть кусок провода (проводник), который имеет длину L, площадь поперечного сечения A и сопротивление R, как показано ниже.

Электрическое сопротивление R этого простого проводника является функцией его длины, L и площади поперечного сечения A. Закон Ома говорит нам, что для данного сопротивления R ток, протекающий через проводник, пропорционален приложенному напряжению, поскольку I = V / R. Теперь предположим, что мы соединяем два одинаковых проводника вместе в последовательной комбинации, как показано на рисунке.

Здесь, соединив два проводника вместе в последовательной комбинации, то есть, к концу, мы фактически удвоили общую длину проводника (2L), в то время как площадь поперечного сечения A остается точно такой же, как и раньше. Но помимо удвоения длины, мы также удвоили общее сопротивление проводника, дав 2R как: 1R + 1R = 2R.

Таким образом , мы можем видеть , что сопротивление проводника пропорционально его длину, то есть: R ∝ L. Другими словами, мы ожидаем, что электрическое сопротивление проводника (или провода) будет пропорционально больше, чем оно длиннее.

Отметим также, что, удваивая длину и, следовательно, сопротивление проводника (2R), чтобы заставить тот же ток I, чтобы течь через проводник, как и раньше, нам нужно удвоить (увеличить) приложенное напряжение I = (2 В) / (2R). Далее предположим, что мы соединяем два идентичных проводника вместе в параллельной комбинации, как показано.

Здесь, соединяя два проводника в параллельную комбинацию, мы фактически удвоили общую площадь, дающую 2А, в то время как длина проводников L остается такой же, как у исходного одиночного проводника. Но помимо удвоения площади, путем параллельного соединения двух проводников мы фактически вдвое сократили общее сопротивление проводника, получив 1 / 2R, поскольку теперь каждая половина тока протекает через каждую ветвь проводника.

Таким образом, сопротивление проводника обратно пропорционально его площади, то есть: R 1 / ∝ A или R ∝ 1 / A. Другими словами, мы ожидаем, что электрическое сопротивление проводника (или провода) будет пропорционально меньше, чем больше его площадь поперечного сечения.

Кроме того, удваивая площадь и, следовательно, вдвое увеличивая суммарное сопротивление ветви проводника (1 / 2R), для того же тока, чтобы I протекал через параллельную ветвь провода, как раньше, нам нужно только наполовину уменьшить приложенное напряжение I = (1 / 2V) / (1 / 2R).

Надеемся, мы увидим, что сопротивление проводника прямо пропорционально длине (L) проводника, то есть: R ∝ L, и обратно пропорционально его площади (A), R ∝ 1 / A. Таким образом, мы можем правильно сказать, что сопротивление это:

Пропорциональность сопротивления

Но помимо длины и площади проводника, мы также ожидаем, что электрическое сопротивление проводника будет зависеть от фактического материала, из которого он изготовлен, потому что разные проводящие материалы, медь, серебро, алюминий и т.д., имеют разные физические и электрические свойства. Таким образом, мы можем преобразовать знак пропорциональности (∝) вышеприведенного уравнения в знак равенства, просто добавив «пропорциональную константу» в вышеприведенное уравнение, давая:

Уравнение удельного электрического сопротивления

Где: R — сопротивление в омах (Ω), L — длина в метрах (м), A — площадь в квадратных метрах (м 2 ), и где известна пропорциональная постоянная ρ (греческая буква «rho») — удельное сопротивление .

Удельное электрическое сопротивление

Удельное электрическое сопротивление конкретного материала проводника является мерой того, насколько сильно материал противостоит потоку электрического тока через него. Этот коэффициент удельного сопротивления, иногда называемый его «удельным электрическим сопротивлением», позволяет сравнивать сопротивление различных типов проводников друг с другом при определенной температуре в соответствии с их физическими свойствами без учета их длины или площади поперечного сечения. Таким образом, чем выше значение удельного сопротивления ρ, тем больше сопротивление, и наоборот.

Например, удельное сопротивление хорошего проводника, такого как медь, составляет порядка 1,72 х 10 -8 Ом (или 17,2 нОм), тогда как удельное сопротивление плохого проводника (изолятора), такого как воздух, может быть значительно выше 1,5 х 10 14 или 150 трлн.

Такие материалы, как медь и алюминий, известны низким уровнем удельного сопротивления, благодаря чему электрический ток легко проходит через них, что делает эти материалы идеальными для изготовления электрических проводов и кабелей. Серебро и золото имеют очень низкие значения удельного сопротивления, но по понятным причинам дороже делать из них электрические провода.

Тогда факторы, которые влияют на сопротивление (R) проводника в омах, могут быть перечислены как:

  • Удельное сопротивление (ρ) материала, из которого сделан проводник.
  • Общая длина (L) проводника.
  • Площадь поперечного сечения (А) проводника.
  • Температура проводника.

Пример удельного сопротивления № 1

Рассчитайте общее сопротивление постоянному току 100-метрового рулона медного провода 2,5 мм 2, если удельное сопротивление меди при 20 o C составляет 1,72 x 10 -8  Ом метр.

Приведенные данные: удельное сопротивление меди при 20 o C составляет 1,72 x 10 -8 , длина катушки L = 100 м, площадь поперечного сечения проводника составляет 2,5 мм 2, что дает площадь: A = 2,5 x 10 -6 м 2 .

Ответ: 688 МОм или 0,688 Ом.

Удельное электрическое сопротивление материала

Ранее мы говорили, что удельное сопротивление — это электрическое сопротивление на единицу длины и на единицу площади поперечного сечения проводника, таким образом, показывая, что удельное сопротивление ρ имеет размеры в Ом-метрах или Ом · м, как это обычно пишется. Таким образом, для конкретного материала при определенной температуре его удельное электрическое сопротивление определяется как.

Электрическая проводимость

Хотя как электрическое сопротивление (R), так и удельное сопротивление ρ, являются функцией физической природы используемого материала, а также его физической формы и размера, выраженных его длиной (L) и площадью его сечения ( А), Проводимость или удельная проводимость относится к легкости, с которой электрический ток проходит через материал.

Проводимость (G) является обратной величиной сопротивления (1 / R) с единицей проводимости, являющейся сименсом (S), и ей дается перевернутый символ омов mho, ℧. Таким образом, когда проводник имеет проводимость 1 сименс (1S), он имеет сопротивление 1 Ом (1 Ом). Таким образом, если его сопротивление удваивается, проводимость уменьшается вдвое, и наоборот, как: Сименс = 1 / Ом, или Ом = 1 / Ом.

В то время как сопротивление проводников дает степень сопротивления потоку электрического тока, проводимость проводника указывает на легкость, с которой он пропускает электрический ток. Таким образом, металлы, такие как медь, алюминий или серебро, имеют очень большие значения проводимости, что означает, что они являются хорошими проводниками.

Проводимость, σ (греческая буква сигма), является обратной величиной удельного сопротивления. Это 1 / ρ и измеряется в сименах на метр (S / m). Поскольку электропроводность σ = 1 / ρ, предыдущее выражение для электрического сопротивления R можно переписать в виде:

Электрическое сопротивление как функция проводимости

Тогда мы можем сказать, что проводимость — это эффективность, посредством которой проводник пропускает электрический ток или сигнал без потери сопротивления. Поэтому материал или проводник, который имеет высокую проводимость, будет иметь низкое удельное сопротивление, и наоборот, поскольку 1 сименс (S) равен 1 Ом -1 . Таким образом, медь, которая является хорошим проводником электрического тока, имеет проводимость 58,14 x 10 6 Симен на метр.

Пример удельного сопротивления №2

Кабель длиной 20 метров имеет площадь поперечного сечения 1 мм 2 и сопротивление 5 Ом. Рассчитать проводимость кабеля.

Приведенные данные: сопротивление постоянному току, R = 5 Ом, длина кабеля, L = 20 м, а площадь поперечного сечения проводника составляет 1 мм 2, что дает площадь: A = 1 x 10 -6 м 2 .

Ответ: 4 мега-симена на метр длины.

Таблица удельных сопротивлений проводников

Проводник Удельное сопротивление
ρ
Температурный коэффициент α
Алюминий 0,028 4,2
Бронза 0,095 — 0,1
Висмут 1,2
Вольфрам 0,05 5
Железо 0,1 6
Золото 0,023 4
Иридий 0,0474
Константан 0,5 0,05
Латунь 0,025 — 0,108 0,1-0,4
Магний 0,045 3,9
Манганин 0,43 — 0,51 0,01
Медь 0,0175 4,3
Молибден 0,059
Нейзильбер 0,2 0,25
Натрий 0,047
Никелин 0,42 0,1
Никель 0,087 6,5
Нихром 1,05 — 1,4 0,1
Олово 0,12 4,4
Платина 0.107 3,9
Ртуть 0,94 1,0
Свинец 0,22 3,7
Серебро 0,015 4,1
Сталь 0,103 — 0,137 1-4
Титан 0,6
Фехраль 1,15 — 1,35 0,1
Хромаль 1,3 — 1,5
Цинк 0,054 4,2
Чугун 0,5-1,0 1,0

Где: удельное сопротивление ρ измеряется в Ом*мм2/м и температурный коэффициент электрического сопротивления металлов α измеряется в 10 -3*C-1(или K -1) .

Краткое описание удельного сопротивления

Мы поговорили в этой статье об удельном сопротивлении, что удельное сопротивление — это свойство материала или проводника, которое указывает, насколько хорошо материал проводит электрический ток. Мы также видели, что электрическое сопротивление (R) проводника зависит не только от материала, из которого сделан проводник, меди, серебра, алюминия и т.д., но также от его физических размеров.

Сопротивление проводника прямо пропорционально его длине (L) как R ∝ L. Таким образом, удвоение его длины удвоит его сопротивление, в то время как последовательное удвоение проводника уменьшит вдвое его сопротивление. Также сопротивление проводника обратно пропорционально его площади поперечного сечения (A) как R ∝ 1 / A. Таким образом, удвоение его площади поперечного сечения уменьшило бы его сопротивление вдвое, тогда как удвоение его площади поперечного сечения удвоило бы его сопротивление.

Мы также узнали, что удельное сопротивление (символ: ρ) проводника (или материала) связано с физическим свойством, из которого он изготовлен, и варьируется от материала к материалу. Например, удельное сопротивление меди обычно дается как: 1,72 х 10 -8 Ом · м. Удельное сопротивление конкретного материала измеряется в единицах Ом-метров (Ом), которое также зависит от температуры.

В зависимости от значения удельного электрического сопротивления конкретного материала его можно классифицировать как «проводник», «изолятор» или «полупроводник». Обратите внимание, что полупроводники — это материалы, в которых их проводимость зависит от примесей, добавляемых в материал.

Удельное сопротивление также важно в системах распределения электроэнергии, так как эффективность системы заземления для системы электропитания и распределения сильно зависит от удельного сопротивления земли и материала почвы в месте расположения системы.

Проводимость — это имя, данное движению свободных электронов в форме электрического тока. Проводимость, σ является обратной величиной удельного сопротивления. Это 1 / ρ и имеет единицу измерения сименс на метр, S / m. Проводимость варьируется от нуля (для идеального изолятора) до бесконечности (для идеального проводника). Таким образом, сверхпроводник имеет бесконечную проводимость и практически нулевое омическое сопротивление.

Про закон Ома многие слышали, но не все знают, что это такое. Изучение начинается со школьного курса физики. Более подробно проходят на физфаке и электродинамике. Рядовому обывателю эти знания маловероятно пригодятся, но они необходимы для общего развития, а кому-то для будущей профессии. С другой стороны, элементарные знания об электричестве, его устройстве, особенностей в домашних условиях помогут предостеречь себя от беды. Недаром закон Ома называют основным законом электричества. Домашнему мастеру нужно обладать знаниями в области электричества, чтобы не допустить перенапряжения, что может повлечь увеличению нагрузки и возникновению пожара.

Понятие электрического сопротивления

Зависимость между основными физическими величинами электрической цепи – сопротивлением, напряжением, силой тока открыл немецкий физик Георг Симон Ом.

Электросопротивление проводника это величина, характеризующая его противостояние электрическому току. Иными словами, часть электронов под действием электрического тока на проводник покидает свое место в кристаллической решетке и направляется к положительному полюсу проводника. Часть электронов остается в решетке, продолжая вращаться вокруг атома ядра. Данные электроны и атомы образуют электросопротивление, препятствующее продвижению высвободившихся частиц.

Вышеописанный процесс применим ко всем металлам, но сопротивление в них происходит по-разному. Это связано с разностью размеров, форм, материала, из которого состоит проводник. Соответственно размеры кристаллической решетки имеют неодинаковую форму у разных материалов, следовательно, электросопротивление продвижению по ним тока происходит не одинаково.

Из данного понятия вытекает определение удельного сопротивления вещества, что является индивидуальным показателем для каждого металла в отдельности. Удельное электрическое сопротивление (УЭС) это физическая величина, обозначающаяся греческой буквой ρ и характеризующаяся способностью металла воспрепятствовать прохождению электричества через него.

Медь – основной материал для проводников

УЭС вещества рассчитывается по формуле, где одним из важных показателей является температурный коэффициент электросопротивления. Таблица содержит значения УЭС трех известных металлов в диапазоне температур от 0 до 100°C.

Если взять показатель УЭС железа, как одного из доступных материалов, равного 0,1 Ом, то для 1 Ом понадобится 10 метров. Самым низким электросопротивлением обладает серебро, для его показателя 1 Ом выйдет 66,7 метров. Значительная разница, но серебро является дорогостоящим металлом, использование которого повсеместно нецелесообразно. Следующим по показателям идет медь, где на 1 Ом необходимо 57,14 метров. В связи с доступностью, стоимостью по сравнению с серебром, медь является одним из популярных материалов для использования ее в электрических сетях. Низкое удельное сопротивление медного провода или сопротивление медной проволоки дает возможность использовать медный проводник во многих отраслях науки, техники, а также в промышленном и бытовом назначении.

Величина удельного сопротивления

УЭС величина непостоянная, она изменяется в зависимости от следующих факторов:

  • Размер. Чем больше диаметр проводника, тем больше электронов он через себя пропускает. Следовательно, чем его размер меньше, тем больше УЭС.
  • Длина. Электроны проходят через атомы поэтому чем длиннее проволока, тем больше приходится преодолевать через них электронам. При расчетах необходимо учитывать длину, размер провода, потому что чем длиннее, тоньше провод, тем его УЭС больше и наоборот. Не рассчитав нагрузку используемого оборудования можно привести к перегреванию провода и возгоранию.
  • Температура. Известно, что температурный режим имеет большое значение на поведение веществ по-разному. Металл, как ничто другое, изменяет свои свойства при разных температурах. Удельное сопротивление меди напрямую зависит от температурного коэффициента сопротивления меди и при нагревании увеличивается.
  • Коррозия. Образование коррозии существенно увеличивает нагрузку. Происходит это по причине воздействия окружающей среды, попадания влаги, соли, грязи, т. п. проявлений. Рекомендуется изолировать, предохранять все соединения, клеммы, скрутки, устанавливать защиту для оборудования, находящегося на улице, своевременно проводить замену поврежденных проводов, узлов, агрегатов.

Расчет сопротивления

Расчеты производятся при проектировании объектов разного назначения и использования, ведь жизнеобеспечение каждого происходит за счет электричества. Учитывается все, начиная с осветительных приборов, заканчивая технически сложным оборудованием. В домашних условиях также будет нелишним произвести расчет, особенно если предусматривается замена электропроводки. Для частного домостроения необходимо рассчитать нагрузку, иначе «кустарная» сборка электропроводки может привести к возгоранию.

Целью расчета является определение общего сопротивления проводников всех используемых устройств, учитывая их технические параметры. Оно вычисляется по формуле R=p*l/S, где:

R – вычисляемый результат;

p – показатель УЭС из таблицы;

l – длина провода (проводника);

S – диаметр сечения.

Единицы измерения

В международной системе единиц физических величин (СИ) электрическое сопротивление измеряется в Омах (Ом). Единица измерения УЭС согласно системе СИ равна такому УЭС вещества, при котором проводник из одного материала длиной 1 м с сечением 1 кв. м. имеет сопротивление 1 Ом. Наглядно применение 1 ом/м относительно разным металлам приведено в таблице.

Значимость удельного сопротивления

Связь удельного сопротивления и проводимости можно рассматривать как обратные величины. Чем больше показатель одного проводника, тем ниже показатель другого и наоборот. Поэтому при вычислении электропроводимости используется расчет 1/r, потому что число обратное к Х, есть 1/Х и наоборот. Удельный показатель обозначается буквой g.

Преимущества электролитической меди

Низким показателем УЭС (после серебра) как преимуществом, медь не ограничивается. Она обладает уникальными по своим характеристикам свойствами, а именно пластичностью, высокой ковкостью. Благодаря таким качествам изготавливается высокой степени чистоты электролитическая медь для производства кабелей, которые используются в электроприборах, компьютерной технике, электроиндустрии и автомобилестроении.

Зависимость показателя сопротивления от температуры

Температурный коэффициент является величиной, которая равняется изменению напряжения части цепи и УЭС металла в результате изменений температуры. Большинство металлов склонно к росту УЭС при увеличении температуры из-за тепловых колебаний кристаллической решетки. Температурный коэффициент сопротивления меди влияет на удельное сопротивление медного провода и при температуре от 0 до 100°C составляет 4,1·10− 3(1/Кельвин). У серебра данный показатель при тех же условиях имеет значение 3,8, а у железа 6,0. Это еще раз доказывает эффективность использования меди в роли проводника.

Сравнительно небольшое удельное сопротивление меди – важный, но не единственный положительный фактор. Широкое применение этого материала объясняется разумной стоимостью, устойчивостью к неблагоприятным внешним воздействиям. Из него несложно создавать качественные изделия необходимой формы, которые без дополнительной защиты сохраняют функциональность при длительной эксплуатации в сложных условиях.

Из меди создают разные виды кабельной продукции

Медь – основной материал для проводников

Квалифицированный выбор подходящего материала сопровождается комплексной оценкой нескольких факторов. Медный проводник не повреждается коррозией, потому что на поверхности образуется защитный слой из окислов. Структурная целостность сохраняется при малом радиусе поворота, после многократных изгибов. Отмеченные параметры пригодятся для оснащения помещений с повышенной влажностью и прокладки линий сложной конфигурации.

Тем не менее, главным преимуществом является малое сопротивление проводов из меди. Кроме улучшения токопроводимости с одновременным снижением потерь при передаче энергии, следует отметить уменьшение веса и размеров кабельной продукции, по сравнению с альтернативными вариантами.

Удельное сопротивление чистых металлов при низких температурах

Колебательные процессы в молекулярной решетке препятствуют свободному перемещению электронов. Этим объясняется увеличение сопротивления по мере роста температуры. Линейная зависимость наблюдается от небольшой положительной температуры, вплоть до точки начала плавления. Соответствующий фазовый переход сопровождается резким увеличением электрического сопротивления. Разумеется, подобный режим после разрушения не является рабочим.

Удельное сопротивление натрия

Теоретические показатели «а» подтверждаются результатами эксперимента «б». Если структуру чистого металла исказить примесями (загрязнениями, компонентами сплавов), произойдет беспорядочное распределение носителей электрического заряда. Это, в свою очередь, увеличит потери в цепи (сопротивление).

Таблица сопротивления металлов

Чтобы убедиться в преимуществах меди, надо сделать соответствующий сравнительный анализ. Ниже приведены значения сопротивлений металлов в сводной таблице.

Основные электрические параметры проводников, созданных из разных материалов

Материал Удельное сопротивление в Омах на метр, замеренное при комнатной температуре (+20°C) Удельная электропроводность при аналогичных условиях, в сименсах на метр
Медь 1,68х10^-3 5,96х10^7
Серебро 1,59х10^-3 6,3х10^7
Золото 2,44х10^-3 4,1х10^7
Алюминий 2,82х10^-3 3,5х10^7
Вольфрам 5,6х10^-3 1,79х10^7
Железо 1х10^-7 1х10^7
Платина 1,06х10^-7 9,43х10^6
Литий 9,28х10^-8 1,08х10^7

Важно! Малого сопротивления проводника из железа недостаточно для широкого применения соответствующих изделий на практике. Активное окисление провоцирует быстрое разрушение.

Таблица удельных сопротивлений проводников

В некоторых ситуациях с расходами не считаются. Военную и космическую технику создают с применением проводников из драгоценных металлов. Такие решения помогают уменьшить сечение и вес, повысить стойкость к радиационным и другим особым воздействиям.

Для изготовления серийных изделий бытового и промышленного назначения применяют более доступные по цене материалы.

Данные для расчета электрических параметров проводников с учетом изменения температуры

Материал Удельное сопротивление (в Ом на мм кв./ м), замеренное при комнатной температуре (+0°C) Поправочный температурный коэффициент (ПК)
Медь 0,0176 0,004
Алюминий 0,0278 0,0045
Сталь 0,13 0,0063
Никелин 0,43-0,45 0,0072
Латунь 0,04 0,002
Нихром 0,98 0,0003
Вольфрам 0,0612 0,00047

Применение нержавеющей стальной проволоки помогает увеличить прочность при одновременной оптимизации себестоимости. Для улучшения антикоррозийных свойств применяют специальные добавки. Они повышают сопротивление проводника из стали почти в 10 раз, по сравнению с медным аналогом.

В любом случае особое значение имеют конкретные условия в процессе использования, а также назначение изделий. Никель, например, проявляет ферромагнитные свойства при чрезвычайно низких температурах ниже порогового значения «точки Кюри» (-358 0°C). Кремний, который применяют для изготовления микросхем и транзисторов, обладает особыми параметрами полупроводника.

Сравнение проводимости меди и алюминия

Первый вывод можно сделать после изучения табличных данных. Сопротивление алюминия примерно на 80% выше, по сравнению с медью. В такой же пропорции хуже проводимость. Но для корректного анализа необходимо изучить дополнительно следующие факты:

  • алюминий легче, но для получения аналогичных электрических параметров понадобится увеличить поперечное сечение (толщину проводника);
  • медные изделия (многожильные кабели) не повреждаются неоднократным сгибанием;
  • удельное сопротивление алюминия изменяется больше при повышении/ снижении температуры;
  • пленка из окислов на его поверхности образуется быстрее, поэтому для надежности (долговечности) современную проводку делают из меди.

Медный и алюминиевый кабель соединяют через стальной переходник, чтобы предотвратить электрохимическую коррозию

Применение электропроводности материалов

Наличие отмеченных свойств используют не только в инженерных энергетических сетях. Хорошая электропроводность позволяет передавать на большие расстояния информационные сигналы без искажений. Сохранение высокой амплитуды уменьшает требования к усилительным трактам, снижает общую себестоимость систем. Минимизация потерь пригодится в электролизных установках, при создании контактных групп и обмоток двигателей.

Важно! Во всех перечисленных примерах, кроме общего повышения эффективности, можно рассчитывать на предотвращение перегрева.

Расчет сопротивления

Для коррекции температурных изменений в последнем столбце второй таблицы приведены отдельные множители по каждой позиции. Расчет выполняют по формуле RT=Rn*(1+ПК*Т), где приведенные символы означают:

  • RТ – электрическое сопротивление в Омах при определенной температуре;
  • Rn – сопротивление проводника при нулевой температуре;
  • ПК – поправочный коэффициент;
  • Т – эксплуатационная температура в градусах Цельсия.

Понятие электрического сопротивления

Этим термином называют свойство создавать препятствия прохождению в цепи электрического тока. Связь между физическими величинами описывается классической формулой R=U/I (обозначения сопротивления, напряжения и силы тока, соответственно). Движение электронов совершается под воздействием электромагнитного поля, разницы потенциалов. Повышает сопротивление металлов любое искажение кристаллической структуры молекулярной решетки. Данная причина объясняет сильную зависимость параметра от чистоты материала и температуры. Так, стандарты для трубной продукции допускают применение различных сплавов. Электротехническую медь (марка М006) создают с контролируемым количеством посторонних примесей не более 0,1%.

Квалифицированное применение этого материала предваряется оценкой всех значимых факторов. Кроме себестоимости, уточняют:

  • особенности механической и других видов обработки;
  • стабильность электрических параметров в определенных условиях эксплуатации;
  • стойкость к внешним воздействиям, долговечность.

В некоторых ситуациях значительные начальные инвестиции оправданы продленным сроком службы, надежностью.

Видео