Дюралюминий: состав, свойства и применение

Дюралюминий — сплав, состоящий из основы в виде алюминия с медью и добавками других металлов. Открытие технологии его изготовления произошло в самом начале девятнадцатого века работником немецкого металлургического завода. После многочисленных экспериментов он установил, что при добавлении к алюминию меди в соотношении 96% на 4% получается сплав, который при выдержке в помещении с комнатной температурой сохраняет пластичность основного элемента с повышением показателей прочности.

Дюралюминий: особенности

Само наименование сплава пошло от торговой марки Dural, под которой был начат его выпуск. В русский язык оно пришло в начале двадцатого века и обозначает целую группу сплавов с алюминием в основе. Могут встречаться различные формы, например «дуралюминий» и «дюраль».

Области применения дюралюминия

Формула успеха дюралюминия была проста. Лёгкий вес и прочность нового продукта способствовали его быстрому распространению. Первым большим его применением стали конструкции каркаса дирижабля. Показал он себя отлично, и со временем ему находили место во всё больших отраслях машиностроения.

Авиастроители по достоинству оценили дюраль, и она быстро стала основой самолётостроения, а также в будущем основным конструкционным материалом в производстве космической техники.

Её применяют в производстве поездов. Дюралюминий в наши дни можно встретить даже на кухне в виде многочисленных бытовых предметов. А также активно используется дюралюминиевая фольга, в которой продают кондитерские изделия.

Активно используется сплав и в строительстве. Различные трубы, листы являются частями конструкций зданий.

Используется дюраль и в автомобилестроении, помогая инженерам уменьшить вес машины, улучшая технические показатели автомобиля. Благодаря устойчивости к высоким температурам, её можно использовать и для внутренних механизмов двигателя.

Дюралюминий лучше переносит вибрацию, чем сталь, что позволило применять его в буровых работах.

Можно заметить, что не все сплавы дюралюминия пригодны для сварки. Например, при строительстве самолётов для создания конструкций из деталей дюралюминия используются заклёпки. Они могут делаться из того же сплава дюралюминия, только пригодного для сварочных работ.

Дюраль: состав сплава

С течением времени состав сплава дюрали совершенствовался, появилось множество новых видов, их различия как в составе примесей, так и способе последующей обработки.

  • Al+Cu+Mg. Этот тип называется дюралюмином. В зависимости от концентрации меди и марганца в сплавах меняются и его общие свойства и характеристики. Данный вид не имеет дополнительной защиты от коррозии, потому для его эксплуатации необходимо дополнительное покрытие для защиты от влаги.
  • Al+Mg+Si. Такой тип называется «авиаль». Добавление к алюминию частей магния и кремния повысило коррозионную стойкость сплава. Для получения своих свойств сплав проходит термообработку при температуре около пятисот градусов по Цельсию и охлаждается в воде с температурой двадцать градусов с естественным старением около суток. Такая обработка позволяет эксплуатировать сплав в условиях повышенной влажности и под напряжением.
  • Al+Mg, Al+Mn. Этот сплав имеет название «магналии». При его производстве не используется термическая обработка. Основными его плюсами является повышенная устойчивость к коррозии и хорошая пригодность к сварочным и паяльным работам.

Состав дюралюминия в процентах можно рассмотреть на примере состава сплава дюралюминий д16:

  • Al (Алюминий): 91 — 94.7%.
  • Cu (Медь): 3.7−4.9%.
  • Fe (Железо): 0.5%.
  • Si (Кремний): 0.5%.
  • Zn (Цинк): 0.25%.
  • Mg (Магний): 1.1 — 1.8%.
  • Cr (Хром): 0.1%.
  • Mn (Марганец): 0.4% – 0.9%.
  • Ti (Титан): 0.15%.

Могут добавляться маркировки, зависящие от форм выпуска сплава:

  • «Т» — закалка в естественных условиях.
  • «Т1» — после процесса искусственного старения.
  • «А» — после покрытия специальными лаками и анодирования.

Например, д16т.

Свойства дюралюминия

Не смотря на попытки борьбы с коррозией путём добавления марганца и магния, дюралюминий все же ей подвержен и подвержен достаточно, чтобы на это обратить внимание. Потому, при эксплуатации необходимо защитить его при помощи какого-либо покрытия. Защита должна быть настолько тщательной, насколько это возможно.

Дюраль отличается небольшим весом при большой прочности. Благодаря этому её и используют как основной конструкционный материал в космонавтике и авиации. Используется также в авиастроении, при производстве скоростных поездов и различных других областях машиностроения.

Средняя плотность дюралюминия 2500−2800 килограмм на кубический метр.

Температура плавления дюралюминия примерно 650 градусов по Цельсию.

Дюралюминиевый сплав, в отличие от алюминия чистого, хорошо подходит к сварочным работам.

Обладает высокой устойчивостью воздействиям среды и низкой уязвимостью к разрушению.

Появление такого лёгкого и прочного материала позволило поднять машиностроение на новый уровень и построить такие технические проекты, которые ранее казались неосуществимыми.

Состав, свойства и применение дюрали

Дюраль (дюралюмин) представляет собой группу важных промышленных сплавов, сыгравших большую роль в развитии самолётостроения и других областей техники. Современные дюралюмины — это многокомпонентные сплавы на основе системы А1-Cu-Mg с добавками марганца и других элементов.

Все дюралюмины, применяющиеся в настоящее время в промышленности, можно разделить на четыре подгруппы:

1. классический дюралюмин (Д1), состав которого практически не изменился с 2019 года;

2. дюраль повышенной прочности (Д16), отличается от сплава Д1 более высоким содержанием магния;

3. дюраль повышенной жаропрочности (Д19 и ВД17), главным отличием которых является увеличенное отношение Mg/Сu;

4. дюраль повышенной пластичности (Д18),  отличается пониженным содержанием меди и магния.

Помимо меди и магния в дюрали всегда содержатся марганец и примеси железа и кремния.

Медь и магний — основные компоненты, обеспечивающие упрочнение сплавов. Марганец является обязательной присадкой, измельчающей структуру, повышающей прочность и коррозионную стойкость.

Железо и кремний — неизбежные примеси. Железо является вредной примесью, снижающей прочность и пластичность дюралюмина. Кремний до некоторой степени устраняет вредное влияние железа, связывая его в более легко разрушаемую при деформации фазу.

Наибольшее применение среди дюралюминов нашли сплавы Д1 и Д16, которые широко используют в авиационной промышленности. Из сплава Д1 изготовляют листы, профили, трубы, проволоку, штамповки и поковки. Такие же полуфабрикаты, кроме поковок и штамповок, получают из сплава Д16.

Дюралюмины повышенной пластичности (Д18) имеют узкое назначение — из них изготовляют заклёпки для авиастроения. Из сплавов ВД17 и Д19 можно получать различные деформированные полуфабрикаты, предназначенные для работы при повышенных температурах.

Сплав Д16 при комнатной температуре обладает наиболее высокой прочностью по сравнению с другими дюралюминами.

Упрочняемая термическая обработка дюралюминов

Для обеспечения высокой прочности дюраль подвергают закалке и естественному или искусственному старению. Чтобы уяснить причины упрочнения сплавов при термической обработке, рассмотрим фазовый состав и превращения в двухкомпонентном сплаве, состоящем из алюминия и 4% меди (рис1.).

Рис. 1 .Часть диаграммы состояния Аl — Cu.

Равновесная структура сплава при комнатной температуре представляет собой — твёрдый раствор, содержащий около 0,5% меди, и включения интерметаллидов типа СuАl2, При такой структуре сплавы обладают низкой прочностью и хорошей пластичностью. Для максимального упрочнения сплавов термической обработкой необходимо решить две задачи:

1. Повысить прочность основной части структуры, т.е. кристаллов — твёрдого раствора;

2. Обеспечить образование вместо относительно крупных избыточных кристаллов интерметаллида СuАl2,большого количества мельчайших вторичных выделений, препятствующих движению дислокаций.

Известно, что напряжение, необходимое для «проталкивания» дислокации между частицами, разделёнными расстоянием L, равно:

, где

G — модуль сдвига, в — вектор Бюргерса дислокации.

Следовательно, чем мельче частицы, тем больше их количество, меньшее расстояние L между ними и большее напряжение «проталкивания». Отсюда, чем мельче частицы, тем больше их упрочняющее воздействие.

Первой упрочняющей операцией для дюралюмина является закалка. Возможность применения закалки основана на наличии переменной растворимости меди в алюминии. Её цель — получить в сплаве неравновесную структуру пересыщенного твёрдого раствора с максимальной концентрацией меди. Закалка заключается в нагреве сплава несколько выше линии переменной растворимости (но не выше солидуса) с последующим резким охлаждением в холодной воде.

При нагреве происходит полное растворение вторичных кристаллов Си Аl2, и сплав приобретает однофазную структуру — твёрдого раствора с высокой концентрацией меди (около 4%). В результате быстрого охлаждения распад высокотемпературного твёрдого раствора не успевает происходить, несмотря на понижение растворимости меди. Таким образом, при комнатной температуре удается зафиксировать пересыщенный твёрдый раствор меди в алюминии с сильно искажённой кристаллической решёткой. Это искажение решётки твёрдого раствора способствует торможению дислокаций и вызывает повышение прочности сплава.

Так, например, отожжённый дюралюмин Д16 имеет предел прочности 220 Мпа, а непосредственно после закалки около 300 Мпа. Однако наибольшее упрочнение происходит при последующем старении.

Старение представляет собой выдержку закалённого сплава при сравнительно невысоких температурах, при которых начинается распад пересыщенного твёрдого раствора или подготовительные процессы, предшествующие его распаду.

Сильная пересыщенность твёрдого раствора после закалки обуславливает его высокую свободную энергию. Распад твёрдого раствора приближает структуру к равновесной, а следовательно, ведёт к уменьшению свободной энергии системы, т.е. является самопроизвольным процессом.

В закалённом дюралюмине подготовительные стадии распада проходят без специального нагрева, при вылёживании в естественных условиях в цехе, на складе или в другом помещении, где температура составляет от 0°С до 30°С. Такое вылёживание в естественных условиях приводит к некоторым изменениям структуры и сопровождается повышением твёрдости и прочности. Этот процесс длится около 5…7 суток и называется естественным старением. Процесс старения, происходящий при повышенных температурах 100…20 OC, называется искусственным старением.

При старении изменение структуры и свойств в зависимости от температуры и времени выдержки происходит в несколько этапов.

На первом этапе в решётке твёрдого раствора образуются субмикроскопические зоны с высокой концентрацией меди. Если в основном пересыщенном растворе содержится около 4% меди (в рассматриваемом сплаве Аl + 4% Cu), а в соединении CuАl2, которое должно выделиться в конечном счёте из раствора — 52% Cu, то в этих зонах концентрация меди промежуточная и возрастает по мере развития процесса. Эти зоны получили название зоны Гинье-Престона, или зон Г.П.. В сплавах типа дюралюмин они имеют пластинчатую форму, а их кристаллическая структура такая же, как и у твёрдого раствора, но с меньшим параметром решётки.

Сущность второго этапа процесса (деление на этапы весьма условно) заключается в некотором росте зон Г.П., обогащении их медью до концентрации, близкой к соединению СuAl2, и упорядочении их структуры.

Третий этап наблюдается при повышенных температурах старения (или при длительных выдержках), когда из пересыщенного раствора выделяются частицы промежуточной фазы . Этот этап является началом собственно распада пересыщенного твёрдого раствора. — фаза по составу соответствует стабильной фазе (CuAl2), но имеет свою особую кристаллическую решётку, отличающуюся от решётки твёрдого раствора и от решётки CuА12. Выделения — фазы не полностью отделены от твёрдого раствора, так как их кристаллические решётки когерентны и не отделены друг от друга поверхностью раздела.

Четвёртый этап характеризуется образованием стабильной фазы (CuAl2). Когерентность решёток твёрдого раствора и выделяющейся фазы полностью нарушается. В дальнейшем частицы CuAl2 коагулируют (укрупняются).

Рассмотренные выше этапы охватывают процесс распада пересыщенного раствора полностью, до получения равновесной структуры, соответствующей диаграмме состояния. При естественном старении обычно образуются зоны Г.П., при искусственном старении — фаза. Четвёртая стадия наблюдается лишь при отжиге, т.е. при нагреве до высоких температур 300... 400 OС.

Описанные выше превращения при старении закалённого дюралюмина сопровождаются изменением свойств. На рис.2. схематично показана типичная закономерность изменения твёрдости (прочности) закалённого сплава в зависимости от температуры нагрева при старении.

Рис.2 Изменение твёрдости закалённого дюралюмина в зависимости от температуры старения

Нагрев пересыщенного раствора первоначально сопровождается ростом твёрдости и прочности, а затем вызывает их снижение. Упрочнение связано с первыми этапами процесса распада, т.е. с образованием зон Г.П. или выделением промежуточных метастабильных фаз (-фазы). Последующие этапы, приводящие к образованию и коагуляции стабильной фазы CuAl2 (-фазы), обуславливают разупрочнение.

Значительное разупрочнение дирали при естественном и искусственном старении является результатом того, что зоны Г.П. и метастабильные промежуточные фазы служат препятствием для движения дислокаций. Скольжение дислокаций осуществляется путём проталкивания их между этими частицами. По мере того, как расстояние между частицами уменьшается, напряжение «проталкивания» дислокаций между препятствиями возрастает, что и приводит к упрочнению. Именно поэтому максимальный эффект упрочнения наблюдается при тех режимах старения, при которых образуются дисперсные, равномерно распределённые на небольших расстояниях одна от другой метастабильные промежуточные фазы. Укрупнение частиц приводит к уменьшению их количества, увеличивает расстояния между ними и способствует снижению прочности и твёрдости.

Режим упрочняющей обработки дюралюминов разных марок отличаются незначительно, но особенностью их термической обработки является необходимость жёсткого соблюдения рекомендованной температуры нагрева под закалку. Так, например, для Д16 температура закалки должна составлять 495…505 °С. Это требование объясняется тем, что указанные температуры весьма близки к температуре начала плавления. Превышение рекомендуемых температур вызывает оплавление границ зёрен и вызывает резкое снижение пластичности. Что касается режимов старения, то они могут быть разнообразными. Так при естественном старении сплава Д16 максимальная прочность достигается через 4 суток. Искусственное старение при температурах 120... 190°С значительно быстрее и, как правило, не превышает нескольких часов.

Дюралюмины способны обеспечивать высокие механические свойства (на уровне углеродистых сталей), обладая в то же время малым удельным весом. Это делает их очень ценным конструкционным материалом для многих областей техники.

К недостаткам дюралей следует отнести их пониженную по сравнению с алюминием коррозионную стойкость. Для них надо применять специальные средства защиты от коррозии. Наибольшее распространение получили плакирование (покрытие листов дюралюмина тонким слоем чистого алюминия) и электрохимическое оксидирование (анодирование).

Также по теме:

Расширение при нагреве. Дилатограммы. Расширение металла при увеличении температуры.

Закалка стали. Термообработка углеродистой стали для упрочнения и повышения твердости.

В промышленности применяют множество конструкционных материалов и один из них дюралюминий. По сути — это собирательное название сплавов, изготовленных на базе алюминия и состава легирующих компонентов. Сплав получил своё название от слова Dural. Именно таково было название одного из первых сплавов, который подвергался термической обработке.

 

Немного истории

Дюралюминий разработан немецким ученым Вильмом в 1903-ем. Металлург попросту смешал алюминий, медь, кремний. С этого момента до начала серийного производства прошло всего 6 лет. В 2019 году дюралюминий стали применять строительства воздушных судов, в частности, дирижаблей и тяжелых бомбардировщиках. Малый вес конструкций при сопоставимой с прочностью стали позволил уменьшить массу летательных аппаратов в 2 — 3 раза. Это привело к резкому развитию авиационной промышленности.

Основные свойства этих сплавов

В базовый состав сплава входят следующие вещества:

  • медь — до 0,5%;
  • марганец до 0,5%;
  • магний до 1,2%;
  • кремний и многие другие.

Изменяя пропорции используемых веществ можно изменять и свойства дюралюминия.

Прочность дюралюминия достигает — до 500 МПа под действием временных нагрузок и 250 — 300 при стандартных нагружениях, (прочность чистого алюминия — 70-80 МПа). Этот параметр сделал дюрали материалом, используемым во многих областях промышленности в том числе и высокотехнологичных. Сплав алюминия с некоторыми элементами, в определенных пропорциях, изменяет полученного сплава.

Благодаря компонентам, применяемым в производстве дюралюминия он приобретает ниже приведенные свойства:

  • прочность, которая сопоставима с определёнными марками стали;
  • высокая стойкость к температурному воздействия. материал начинает плавиться при температуре 650 ºC.
  • повышенная электропроводность. это происходит из-за наличия меди.
  • дюраль хорошо переносит прокат как по горячей, так и по холодной технологии.

Высокие технологические свойства дюралюминия, привели к высокому спросу на него. В мире производят порядка 60 000 тысяч тонн, из которого почти половину (свыше 30 000 тысяч тонн) изготавливают на территории КНР. Россия занимает второе место об объёмам производства, металлургические заводы получают 3 580 тыс. тонн.

Особенности производства

Производства дюраля, как и большинства сплавов, сопряжено с рядом сложностей. Получение дюраля происходит последовательно. На первом этапе получают технический алюминий и только потом в него начинают вносить добавки, формирующие его свойства. На втором этапе, получений первичный дюраль проходит через термический отжиг, производимый при 500 ºC. Такой режим обработки обеспечивает гибкость и мягкость металла. Для повышения прочности дюраль проходит через операцию старения.

Отечественная и иностранная промышленность освоила выпуск следующих видов проката:

  • листы и полосы разного типоразмера ГОСТ 21631-76;
  • прутки круглые и многогранные по ГОСТ 21488-97;
  • трубы разного диаметра и разной толщиной стенок ГОСТ 18475-82 и ГОСТ 18482-79;
  • профили различной формы сечения.

 

Основные виды сплавов

Существует несколько видов сплавов, отличающихся своими характеристиками.

1. Алюминий + марганец или магний. Такой сплав называют «магналии». Материал отличает высокая стойкость к коррозии, хорошая сварка и пайка. Между тем — материал плохо поддаётся обработке на металлорежущем оборудовании. Кроме того при работе со сплавом магнолии никогда не используют промежуточную закалку.

Магнолии применяют для бензопроводных систем, радиаторов для автомобилей, ёмкостей различного назначения.

2. Сплав, состоящий из алюминия, магния и кремния, получил название — «авиаль». Сплав обладает такими свойствами как:

  • Высокая стойкость к воздействию коррозии;
  • Высокая прочность сварных и паянных швов.

Для получения данных технологических свойств авиаль проходит термообработку. Ее проводят при температуре, почти в 520 ºC. Последующее резкое охлаждение необходимо выполнить в воде, температура которой составляет 20 ºC.

После проведения такой обработки авиаль можно использовать для работы в условиях повышенной влажности, его широко применяют в самолетостроении. В последние годы, авиаль используют для замены стальных деталей из носимым устройств связи, например сотовых аппаратов и пр.

3. Еще один сплав — дюралюмин. В него, кроме алюминия входят медь и марганец. Пропорции компонентов изменяют, тем самым модифицируя качественные свойства сплава. Но несмотря ни на что, дюралюмин обладает не высокой стойкостью к коррозии. Поэтому на поверхность наносят слой чистого алюминия. Такая операция называется плакированием и с успехом предотвращает воздействие коррозии.

Дюралюмин применяют в транспортном машиностроении, в частности, детали из этого материала установлены в скоростном поезде «САПСАН».

Использование дюралюминия

Это семейство сплавов, по сути, базовый материал, применяемый в строительстве авиационной и космической техники. Это его использования началось в начале ХХ века при сооружении первых дирижаблей.

В наши дни на практике используется больше десяти марок этого сплава. При сооружении авиационной техники чаще используют материал под названием Д16т. В его состав состоит из девяти веществ — никель, титан, в качестве легирующих составляющих применяют медь, кремний и пр. Но при всем. Доля алюминия остаётся неизменной — 93%.

При выборе материала для деталей и узлов технолог должен помнить, что далеко не все дюрали хорошо свариваются или паяются. В таком случае для сборки деталей из него применяют заклепки. Такие операции широко распространения при сборке фюзеляжей и плоскостей при строительстве самолетов, водного транспорта всех типов. Так, небольшая лодка, применяемая для своих целей, может прослужить ее хозяину на 20 лет больше.

С другой стороны, некоторые марки дюралюминия хорошо свариваются при использовании аппаратов аргонной сварки.

Кстати, еще в ХХ веке велись опытные работы по использованию дюралей в автомобильной отрасли. Из него изготавливают кузова автобусов, некоторых марок легковых и спортивных автомобилей. Само собой дюрали применяют и в силовых узлах.

Некоторые марки этого сплава применяют для производства труб, которые устанавливают на судах, авиационной технике, автомобилях.

Свойства дюраля позволили его использовать и в пищевой промышленности, например, из дюралевой фольги производят фантики для конфет и шоколада.

Нельзя забывать и том, что многие домохозяйки применяют кухонную утварь, выполненную из этого материала.

Низкий вес дюраля позволяет его применение при выполнении буровых работ. Все дело в том, дюралюминий в 3 — 4 раза легче стали. Кроме этого трубы из дюралюминия проще переносят вибрацию, которая неизменно возникает при выполнении буровых работ.

Отдельного разговора требует применения дюраля в строительной отрасли. Его применяют для производства облицовочных материалов, различных ограждающих конструкций и пр.

Нормативная база

В нашей стране существует несколько ГОСТ, которые нормируют требования к алюминию и его сплавов. Один из них — это ГОСТ 4784-97 Алюминий и сплавы алюминиевые деформируемые. Марки (с Изменениями N 1, 2, 3, с Поправками). Он распространяется на алюминий и сплавы из него, которые предназначены для получения полуфабрикатов различного типа и форм.

В частности, ГОСТ определяет соотношение алюминия и остальных компонентов. В этом же документе указаны требования.

Кстати, в этом же документе можно найти и наименование иностранных аналогов, например,

Д16 можно заменить на AlCu4Mg1, а Д16ч на сплав 2124.

В документах, которые предоставляет производитель, в обязательном порядке должны быть указаны не только марка готовой продукции но и ее химический состав.

Немного экономики 

Изделия из дюралюминиевого сплава не составит труда приобрести. Его производство развёрнуто почти на всех предприятия цветной металлургии. Цена на продукцию образовываются в зависимости от состава, сортамента, размеров отгрузки и, конечно, удалённостью производителя до места реализации.

Немного слов в заключении

Про дюралюминий, можно смело сказать, что его появление обеспечило технологические прорывы в самолетостроении, космической промышленности и без своевременного появления мы бы летали на самолетах из дерева.

Оцените статью:

Рейтинг: 0/5 — 0
голосов

Пластичен, как алюминий, но в несколько раз тверже. Таков дюралюминий – сплав, созданный немецким металлургом Альфредом Вильмом. Он работал на заводе города Дюрен.

От его имени и образовано название сплава. Имя же Альфреда знают лишь в узком кругу ученых и промышленников. Расширим рамки, рассказав об открытии немецкого металлурга и том, что это открытие дало миру.

Химические и физические свойства дюралюминия

Дюралюминий получен Вильмом в 1903-ем. Мастер примешал к чистому металлу №13 немного меди, марганца и магния. На всю лигатуру пришлось всего 7% от состава дюралюминия.

Но, этого оказалось достаточно, чтобы упрочнить сплав. Правда, твердым он стал не сразу, а лишь после закалки. Металлурги именуют ее искусственным старением материала.

Процесс заключается в нагреве и постепенном охлаждении металла. Внутри него происходят перестановки атомов, которые в естественных условиях длятся десятилетиями. В итоге, получается сплав, как будто проживший свой век, закалившийся в «невзгодах жизни».

Дюралюминий – сплав, запущенный в серийное производство в 1909-ом. С момента открытия Альфреда Вильмома прошли всего 6 лет. Это указывает на важность разработки, ее необходимость.

Свойства дюралюминия и низкая стоимость сразу склонили на его сторону, к примеру, авиапромышленников. Уже в 1910-ом из нового материала начали производство дирижаблей. Дюраль сделал их легкими, ведь и алюминий легок. При этом, новый сплав выдерживал высокие температуры. Плавится материал лишь при 650-ти градусах Цельсия.

Плотность дюралюминия равна 2,5 граммам на кубический сантиметр. Именно этот показатель обуславливает легкость сплава. У некоторых его марок плотность доходит до 2,8, что тоже ниже среднего. У стали, к примеру, на каждый кубический сантиметр приходится по 8 граммов веса.

Ценно в  дюралюминии и сочетание статической прочности с усталостной. Под первой понимается способность противостоять разовой нагрузке. Усталостной прочностью именуют критическую нагрузку, при которой материал разрушается.

Так вот, разрушить дюраль непросто. Это, скорее, может сделать коррозия, чем силовое воздействие, давление. Поэтому, разрушение смеси алюминия с медью в присутствии кислорода блокируют, нанося на сплав защитное покрытие. Им может быть чистый алюминий. Покрытие им деталей из дюраля именуют плакированием.

Применение дюралюминия

Тугоплавкость дюрали сделала ее основным материалом не только самолетостроения, но изготовления скоростных поездов. В движении они могут сильно нагреваться. Сплав алюминия с медью пускают, как на обшивку, так и на внутренние узлы, а так же, крепежи. Так, из дюралюминия делают болты, прутки, заклепки.

Сварка дюралюминия проста, осуществляется с помощью аргона, возможна даже в домашних условиях. Такая элементарность обращения с материалом – еще одна причина его распространенности. Так, из дюрали делают трубопроводы. Речь о проводниках газа и прочих энергоресурсов ЖКХ.

Пластичность героя статьи позволяет раскатывать его в тонкие листы. В итоге, плавление дюралюминия «рождает» фольгу толщиной не более 0,2 миллиметра. Ей обертывают строительные товары.

Фольгу из дюраля, так же, используют в качестве тепловых экранов. Ими утепляют бани и сауны. В пищевой промышленности в листовой дюралюминий оборачивают конфеты.

Говоря иначе, сплав идет на фантики. Садоводы обертывают фольгой деревья, защищая их от грызунов и морозов. Туристы сооружают из раскатанного дюраля подобие посуды.

Круги из сплава алюминия с медью закупают для буровой отрасли. В ней важна не только компоновка, но и вес колонн прохождения. Легкость дюралюминия в сочетании с прочностью и стойкостью к высоким температурам делают выбор промышленников однозначным. Буры из сплава алюминия отлично гасят вибрации, немагнитны и обладают пониженным значением продольного сдвига.

Пригождается дюралюминий и в производственных цехах. Здесь листами из сплава выстилают полы и прочие поверхности. Покрытие делают рифленым, чтобы придать антискользящие свойства.

А вот свойства проводника тока у дюраля, так сказать, в базовой комплектации. Поэтому, провода из сплава алюминия с медью не менее распространены, чем просто медные. Точнее, алюминиевые провода более популярны, ведь и весят меньше, и стоят.

Доступность материала сделало дюралевые листы – одним из материалов для облицовки домов. Как правило, это дачные строения. Их покрытие дюралем требует дополнительного фасада, защиты от коррозии.

Зато, сплав устойчив к химическим реагентам, поэтому, часто применяется еще и в вентиляционных системах, становится материалом для изготовления вытяжек.

Производство дюралюминия

Производство сплава проходит в несколько этапов. Сначала, формируют шихту из гранул чистого алюминия и легирующих металлов. Сплавление осуществляется поэтапно. В итоге, получается первичный дюралюминий.

Теперь, необходима закалка. Она начинается с нагрева материала до 500-от градусов Цельсия. Отжиг при такой температуре дает достаточные мягкость и гибкость сплава. Далее, его нужно охладить. На это уходят несколько дней. Выдерживается 20-градусная температура. Ждут, пока дюраль не достигнет ее же. Старение сплава завершено.

Дабы ускорить закалку промышленники часто проводят ее за несколько часов в условиях небольшого нагрева материала. Качество дюралюминия, при этом, падает. Зато, падают и затраты на производство, ускоряется выпуск.

Между тем, главное, выдержать баланс меж прочностью и пластичностью дюраля. Если сделать его чуть тверже нужного, потеряется не только способность принимать нужную форму, но и стойкость к коррозии.

Поэтому, прежде чем купить дюралюминий, промышленники, как правило, посещают его производство, убеждаясь в следовании нормативам. Берутся образцы для экспертизы. Лишь потом происходит сделка. Узнаем расценки.

Цена дюралюминия

Пластичность дюралюминия позволяет делать из него заготовки любых форм. Так, кило шестигранников по ГОСТу 21488-97 стоит в районе 100-160-ти рублей. Круглые прутки стоят ль 90-та до 230 000 рублей.

Ценник зависит от марки дюрали и сечения деталей. То же касается листов. За образцы толщиной в половину миллиметра, к примеру, просят около 300 000 рублей за тонну.

Уголки из дюралюминия, используемые в строительстве в качестве направляющих, оцениваются в 300 рублей за килограмм. 1 000 граммов в плите оценивается примерно в 100 рулей. Толщина плит, как правило, составляет 1,5 сантиметра.

Трубы из дюрали стоят в районе 130 рублей за килограмм веса. От прутков детали отличаются наличием внутренних полостей. Они есть и в кругах из сплава алюминия с медью. Диаметр полостей в кругах меньше, чем в трубах. Стоят детали, используемые в буровых установках, 140-200 рублей за 1 000 граммов.

Осталось узнать расценки на фольгу. За ее техническую версию просят всего около 200-от рублей за тонну. Если же приобретается пищевая фольга, ценник доходит до 350-ти рублей за кило. Продают материал, как правило, в рулонах весом не более 200-от граммов. Это несколько метров фольги.